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Abstract. The paper presents a method for finding the absolute best basis out of the library of
bases offered by the wavelet packet decomposition of a discrete signal. Data-adaptive optimality
is achieved with respect to an objective function, e.g. minimizing entropy, and concerns the
choice of the Heisenberg rectangles tiling the time–frequency domain over which the energy
of the signal is distributed. It is also shown how optimizing a concave objective function is
equivalent to concentrating maximal energy into a few basis elements. Signal-adaptive basis
selection algorithms currently in use do not generally find the absolute best basis, and moreover
have an asymmetric time–frequency adaptivity—although a complete wavepacket decomposition
comprises a symmetric set of tilings with respect to time and frequency. The higher adaptivity
in frequency than in time can lead to ignoring frequencies that exist over short time intervals
(short as compared to the length of the whole signal, not to the period corresponding to these
frequencies). Revealing short-lived frequencies to the investigator can bring up important
features of the studied process, such as the presence of coherent (‘persistent’) structures in
a time series.

1. Introduction

1.1. Information representation in the time–frequency plane

The development of time–frequency representations of signals (see e.g. [1]) is an area
of continuing interest in many engineering and scientific disciplines, for the purpose of
investigating and/or compressing observed signals or processes. While the latter goal
is reached by using non-redundant representations, the former can also be pursued by
redundant (possibly highly redundant, in the limit continuous) representations. Continuous
representations give the researcher the opportunity to observe fine-structure features such
as branching and edges, while non-redundant representations may be optimized (e.g. least-
entropy) to capture much of the information about the signal in a few numbers. In this
way, they make it possible to unravel underlying laws of the studied phenomenon from
the positions in the time–frequency plane and the shapes of the Heisenberg tiles which
contain most of the signal energy. If orthogonality is preserved within a non-redundant
representation (a basis), then the areas of the Heisenberg tiles are non-overlapping, i.e. each
basis element represents, to a good extent, a distinct area of the time–frequency plane.
These orthogonal bases are the focus of the present article, which shows how to tile the
time–frequency plane in such a fashion so as to capture the most possible information in a
few tiles, and to gain a better understanding of the process from the way the time–frequency
plane is being optimally tiled. To that end, we present a straightforward algorithm that we
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have developed for optimizing the tiling with respect to an objective function that is additive
over the elements of a basis.

1.2. Fundamental tilings of the time–frequency plane

In a general sense, frequency can be defined as the number of repetitions of a certain pattern
per unit time. A frequency representation of a signal can be best understood by an analogy
to time representation, i.e. while in the latter, intensity is considered at different points in
time, in the former, intensity is considered at different frequencies. In other words, the
intensity corresponding to a particular frequency is representative of the contribution of that
frequency to the signal. This intensity can be shown to result from the convolution of the
signal with the (chosen) pattern of that frequency. For instance, a classic example of a
frequency representation is the Fourier transform, wherein the pattern is a sinusoid.

The frequency representation that we have mentioned ‘looks’ at the signal as a whole,
i.e. globally. Such representations would be useful for processes where the frequency
content does not change over time. However, the frequency content of many natural
processes changes considerably over time and the aforementioned representation(s) fall short
in assisting one to characterize these changes. A solution to this drawback is representations
that analyse parts of the signal separately. Such representations are called short-time
frequency representations.

A ‘packet’ of all such short-time frequency representations can be built for a given signal
and a chosen analysing pattern. Using, for example, the Haar wavelet as our pattern (which
is the simplest pattern available when smoothness is not necessary, and moreover, it does not
require the use of an additional, different wavelet at the boundaries, to preserve orthogonality
[2]), we build the Haar wavelet packet as outlined by Wickerhauser [3], and explained
below. If r = (r1, r2, . . . , rn) denotes a discrete sequence ofn = 2k values, we define the
‘high-frequency’ (or differencing) operatorH(r2i−1, r2i ) = (r2i−1 − r2i )/

√
2, and the ‘low-

frequency’ (or averaging) operatorL(r2i−1, r2i ) = (r2i−1 + r2i )/
√

2, wherei = 1, . . . , n/2.
Applying either one of the operators to the sequencer in a non-overlapping manner, we
obtain a sequence ofn/2 elements, symbolically denotedHr or Lr, respectively. Note
that the recursive, alternate application of the two operators to a data series is equivalent to
convolving subsequences of the signal with the Haar wavelet at different frequencies [3].
Importantly, the constructionrule for the wavelet packet is independent of the particular
wavelet (‘pattern’) that is used [3]. We obtain the tree shown in figure 1, which illustrates
the procedure for an 8-value series.

Note that the horizontal levels in the wavelet packet are (top-to-bottom): the signal
itself (the ‘temporal representation’ or ‘standard basis’), the discrete short-time frequency
representations (DSTFRs), and finally the frequency representation. Note that for a time
series containingn = 2k data points, there are exactly log2(n)−1= k−1 different DSTFRs.
Together with the temporal representation and the frequency representation, they make up the
log2(n)+1= k+1 possible tilings of the time–frequency domain withn identical, similarly-
positioned rectangles. These are called here the fundamental representations. Moreover,

r
Lr H r

LL r H Lr H H r LH r
LLL r H LL r H H Lr LH Lr LH H r H H H r H LH r LLH r

Figure 1. Wavelet packet.
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Figure 2. Tilings corresponding to the wavelet packet fundamental representations (Haar-wavelet
indexing) of a time series containing eight values.

thesek+1 tilings exhaust all shapes of rectangles that appear in tilings of the time–frequency
domain of such a diadic decomposition of a time series.

Symbolic diagrams of these representations can be drawn in the time–frequency plane,
as shown in figure 2 (for an 8-value series, again). The tiles in the diagrams symbolize
the location of the respective wavelet-packet coefficients, in the sense of associating them
with an area in the time–frequency plane. The tiles are significant in rendering the ratios of
frequency resolutions as the ratios of their heights and the ratios of time resolutions as the
ratios of their widths (due to the Heisenberg principle), as well as their relative positioning
in time and in frequency. However, their absolute sizing and positioning do not have a
precise meaning by themselves, but stand in relation with the time–frequency localization
of the particular wavelet that is used [2].

In using time–frequency representations of a process as a research tool, it is important
that the Heisenberg tiles cover the time–frequency plane without gaps (and, consequently,
without overlaps), in order to represent each area of the time–frequency plane in the basis.
Non-overlapping is also equivalent (for the Haar wavelet used herein) to the orthogonality
property of the basis. Non-overlapping implies orthogonality since two non-overlapping
rectangles have non-overlapping projections onto at least one axis. Without loss of generality
we assume it is the time axis. According to the construction rule in equations (1), the basis
element corresponding to any given tile can be obtained from the signal elements whose
tiles project onto the same time interval as that given tile. Therefore, the signal elements
involved in representing the two non-overlapping tiles are disjoint, and their scalar product
is zero. Conversely, two overlapping tiles have overlapping projections on both axes and
hence are not orthogonal.
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Figure 3. Wavelet tiling.

2. Background on some classical time–frequency representations and algorithms

2.1. The wavelet representation

In essence, the wavelet representation is a first attempt to adapt a combination of elements
of fundamental representations to features of the data. It stems from the fact that very often,
in natural signals, several frequencies present in the signal have bandwidth proportional to
the values of those frequencies, i.e. comparable energy content is found within geometrically
progressing frequency bands [4, 5]. This is equivalent to saying that at each frequency, the
time resolution (inverse ‘scale’) is made proportional to the period of the signal, that is,
the length of the signal involved in calculating one wavelet-basis coefficient is equal to one
pattern length at every scale.

Consider the 8-values example in figure 2 to see how one can go to a wavelet
representation from the fundamental representations. The choice made at the first step
is the top half (i.e.Hr12 . . . Hr78) from B; the next step is the choice of the upper blocks in
the lower half (i.e.HLr1−4 andHLr5−8) from C and the final step involves the selection
of the bottom most two elements (i.e.HLLr1−8 andLLLr1−8) from D. The so obtained
representation is called the wavelet representation and is illustrated in figure 3. It is worth
mentioning that such a selection leads to a constant stepsize in log-frequency.

2.2. The ‘classical’ single-tree algorithm

While the wavelet representation shown in figure 3 was historically the first one to result
in combining elements of different D(ST)FRs in afixed tiling (according to the criterion of
geometric progression of frequencies), the first procedures to perform anadaptiveselection
of elements from the fundamental representations came with the tree algorithms [3, 6].
In order to capture the maximal energy in any given number of basis elements (obtain
‘maximal contrast’), minimal entropy is one appropriate objective function in a context
where theL2-norm (energy) of the basis is preserved. This choice is motivated by the
equivalence of negative entropy to information [7]. Thus, in choosing and combining tiles
of the described fundamental representations, we seek herein a representation with minimal
entropy. However, in the appendix it is shown that any concave objective function produces
the same ordering within a set of normalized bases as the energy contrast ordering, if the
latter exists.

The algorithm that allows us to pick an adaptive representation based on an entropy
objective function (or any concave objective function whose value over a set of tiles is the
sum of the values for each tile) works [3] as follows. Starting at the lowest level, each
pair of adjacent blocks is compared with the block immediately above, in terms of entropy.
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The one satisfying our minimal entropy criterion is ‘promoted’ (chosen). Then, this step is
repeatedk = log2(n) times, up to the level of the signal. The resulting representation is
optimal within a certain pool, and the algorithm has a complexity of ordern log(n).

To express the entropy, we define the normalized energy of theith sample of a time
series as

ei = r2
i∑n

j=1 r
2
j

and similarly at each (horizontal) level of the wavelet packet (WP) tree, as the square of the
intensity corresponding to theith tile, normalized by the sum of squares of all intensities at
that level (i.e. the intensities corresponding to all tiles of that fundamental representation).
It is worth mentioning that normalization is superfluous if energy-preserving operators, such
as in equations (1), are used. From the energyei we define the entropy of theith tile as

si = −ei ln(ei).

Disadvantages of the WP single-tree algorithm. Every block in the WP tree involves a
time span that is equal to the length of the signal. Since the process of selection involves
only whole blocks, the time resolution of our representation of choice is affected: although
different intensities do indeed show along the time axis,the split itself (i.e. the shapes of the
rectangles in the time–frequency tiling)is not time-adaptive. Two negative consequences
are obvious: (a) in an immediate perspective, we do not reach the absolute minimal entropy,
since we only look at a subset of the tiles constructed from elements of the fundamental
representations; and (b) in a wider perspective, we do not achieve symmetry between time
and frequency. As will be shown later, this asymmetry of the tiling can obscure important
features of a signal.

2.3. The double-tree algorithm

To overcome the above-stated shortcomings, Herleyet al [8, 2] as well as Ramchandran and
Vetterli [9] have elaborated new algorithms, of which the most performant is the double-tree
algorithm. Its complexity is of ordern log2(n), with approximately the same proportionality
constant as the original WP-tree algorithm. Essentially, the algorithm amounts to running the
aforementioned WP-tree algorithm on each of the fundamental representations. The double-
tree algorithm also fails, in certain cases, to find the absolute best basis, since it does not
exhaust all tiling comparisons. For some synthetic signals this non-optimal selection of
bases can be shown to result in significant differences in entropy, although in most real-life
cases (the rainfall series we studied) these differences had relative values of only a few
percent. For such purposes as data compression and/or transmission, this algorithm may be
appropriate, especially given its speed. For research purposes however, one may want to
have an algorithm that really finds the optimal tiling. Remarkably, for the rainfall intensity
process, which is positive and consequently has a strong low-frequency component, the
double-tree algorithm renders mostly thesamedecomposition as the single-tree algorithm.
For illustration purposes, figure 4 shows the entropy-minimizing tilings for the sequence
(5, 0, 2, 4, 8, 6, 1, 0) as rendered by the single-tree algorithm, the double-tree algorithm, as
well as by the algorithm presented in the next section, which finds the absolute best basis.
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Figure 4. Entropy-minimizing time–frequency tilings for the sequence(5, 0, 2, 4, 8, 6, 1, 0),
as rendered by the single-tree algorithm (A), the double-tree algorithm (B), and the optimal-
basis algorithm presented in section 3 (C). The respective entropies of the normalized bases are
approximately 1.071, 0.967, and 0.95.

2.4. Reconstruction

Note that what makes these algorithms work is the fact that any pair of adjacent blocks in
the WP-tree is interchangeable with the block above. This is since

L(r2i−1, r2i ) = (r2i−1+ r2i )/
√

2

H(r2i−1, r2i ) = (r2i−1− r2i )/
√

2

}
⇐⇒

{
r2i−1 = (L(r2i−1, r2i )+H(r2i−1, r2i ))/

√
2

r2i = (L(r2i−1, r2i )−H(r2i−1, r2i ))/
√

2.
(1)

This inductively shows that each fundamental representation is a basis inr, with elements
being linearly-independent combinations of(r1, r2, . . . , rn). The above equation has two
other immediate consequences: (a) in the time–frequency tiling diagram, any rectangles
that fill the same area are interchangeable while transforming a basis into another basis; and
(b) a signal-reconstruction algorithm with complexity of ordern log(n) can be written for an
arbitrary representation (built from elements of the fundamental representations), by simply
replacing pairs of elements from the lower levels with theirL-and-H inverse operators as
shown above.

3. An algorithm to choose the absolute optimal basis

For research purposes, it is not only the value of the basis element associated with a certain
tile in the time–frequency plane that carries information.The tiling shapes themselves, since
they are adaptive, can capture highly localized phenomena, and show the time–frequency
localization of these phenomena. It is therefore our goal to both overcome the splitting
restrictions of the ‘classical’ tree algorithm (which needs to keep the same tiling throughout
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Figure 5. Illustration of the best-basis tiling algorithm.

time), and also to completely optimize the adaptive tiling, something that both the single-
tree and the double-tree algorithm fail to do. Another issue of concern is the lack of
shift-invariance of tree algorithms. Since in the analysis of a natural process there often is
no clearly defined moment of incipience, we would like to have a tool whose results do not
drastically vary with a time shift.

The idea of the proposed algorithm is the following: any diadic non-overlapping time–
frequency tiling, and therefore the optimal representation, has to be split in half either by
time, or by frequency, or both. Therefore, e.g., our initial 8-point time–frequency square
(figure 5(A)) has to be halved as in either figure 5(B) or figure 5(C), full lines. We decide for
the optimal tiling by further applying the above idea iteratively (e.g. the subsequent halving
shown by broken lines in figures 5(B) and (C), and so forth) down to the elementary level,
where each rectangle corresponds to exactly one DSTFR tile. Note that naturally, as we
go back the decision path, at each level the existing rectangles contain the optimal tiling
structure that can be achieved within each one of these rectangles. The algorithm takes
k = log2(n) steps for a discrete sequence ofn = 2k values. Since at each step 2 sums,
from 2 rectangles each, are to be compared in terms of the objective function, a complexity
of order 4k = n2 results. Note here that the number of possible tilings grows exponentially
with n. (This can be shown by noting that the number of possible tilings of the time–
frequency square withn tiles drawn from the fundamental representations can be written,
from considerations of symmetry, asTn = 2T 2

n/2− T 4
n/4, with T1 = 1 andT2 = 2. We have

from here that∃b such that∞ > limn→∞ Tn/bn > 0, with b = 5∞i=1a
−1/2
i ≈ 1.844 547 57,

ai = (2− a2
i−1)

−1, a0 = 0. Also, limn→∞ Tn/bn = limi→∞ ai = (
√

5− 1)/2, the inverse of
the golden ratio.)

The algorithm completely optimizes the tiling of the time–frequency plane with
respect to a given objective function (e.g. entropy), using tiles from the fundamental
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Figure 6. Fraction of energy recovered by the optimal WP basis elements (in decreasing order
of magnitude) of the Iowa City rainfall event of 12 April 1991.

representations for which tile intensities are obtained with a given pattern function (e.g.
Haar wavelet).

Proof. Halvingp times the time–frequency square of a signal of lengthn = 2k, k > p > 0,
we obtain a rectangle that containsn/2p = 2k−p tiles. Such a rectangle can contain tiles
over its whole length, or over its whole width, or none of these, but not both (or otherwise
they would overlap); as a consequence, it can always be halved either in frequency, or in
time, or both. Or, in other words, the union of the sets of tilings of the two vertical halves
of the rectangle and the sets of tilings of the two horizontal halves of the rectangle equals
the set of tilings of the rectangle. This in turn implies that if we can find the optimal tiling
of each of the two pairs of two halves, we can also decide which is the optimal tiling of
the original rectangle. Since (a)p was chosen arbitrarily and (b) forp = k− 1 each half is
one tile, the optimal tiling being decidable from directly computing the objective function,
we conclude by induction that the halving algorithm described here finds the optimal tiling
of the time–frequency square of then-values signal.

Figure 6 shows how much of the energy of a rainfall time series is recovered by the
elements (in decreasing order of magnitude) of the optimal representation.

The algorithm achieves the following:
(1) As it exhausts all combinations of ‘fundamental tiles’, the algorithm reaches the

absolute optimal tiling with respect to the chosen objective function. Though the differences
in the entropies of competing tilings might be small, the tilings themselves may be very
different, and the truly-optimal tiling may depict, in the signal, patterns which might be of
physical importance. A comparison between a ‘classical’ wavelet packet decomposition and
the ‘best’ representation of the first 256 data points of the Iowa City 5-second rainfall time
series from 12 April 1991 (complete time series shown in figure 7, and first 256 samples
in figure 8) is shown in the top row of figure 9.

(2) To further see how the algorithm performs, let us superimpose a weak signal of
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Figure 7. The Iowa City rainfall event of 12 April 1991.
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Figure 8. The first 256 samples (≈21 min) of the Iowa City rainfall event of 12 April 1991.

frequency 192∗ (2 ∗ 256∗ 5 s)−1 and amplitude 0.1 mm hr−1 on the first 16 data points.
Note that the intensity of the superimposed signal is much lower than the average intensity
of the rainfall, which is 2.48 mm hr−1. The optimal representation shows that it is ‘aware’
of the superimposed signal by changing the tiling, as opposed to the single-tree algorithm,
which only changes the intensities, but not the tiling in the area (see figure 9, second row).
The amplitude of the superimposed signal required for the optimal representation to change
the tiling is lower than the one for the single-tree algorithm.

(3) As a stronger superimposed signal (amplitude of 0.2 mm hr−1) is used, the single-
tree algorithm finally changes its tiling, but it has to do so throughout the whole time axis,
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Figure 9. Classical’ (left) versus optimal (right) wavelet packet representation of the first 256
data points (1280 s) of the Iowa City rainfall event of 12 April 1991, shown in figure 8 (top
row; average rainfall intensity: 2.48 mm hr−1); same, with a superimposed signal of frequency
192∗ (2∗ 256∗ 5 s)−1, as indicated by the pointer, and intensity 0.1 mm hr−1 for the first 80 s
(second row); same, with intensity of the superimposed signal equal to 0.2 mm hr−1 (third row).

whereas the optimal representation is able to ‘locally’ depict the perturbation with respect
to both time and frequency (see figure 9, bottom row).

(4) It is the case with the ‘classical’ tree decomposition that due to its tree structure,
time-shift sensitivity is much higher than frequency-shift sensitivity. That makes its use
problematic for research purposes, since the search for patterns in a signal should be as
robust as possible with respect to the positioning of the analysis window, for which we
generally have noa priori criteria. The optimal representations for two different, but
overlapping segments of the Iowa City 5-second rainfall time series from 3 October 1990
(shown in figure 10) is displayed in figure 11. Clearly, the main features have been preserved
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Figure 10. The Iowa City rainfall event of 3 October 1990.

in the overlapping zone. The same shifted signals are also represented using a single-tree
decomposition (‘classical’ tree), and significant artificial differences show.

(5) The algorithm also exhibits time–frequency symmetry, overcoming the intrinsic
disadvantage of all tree algorithms, namely their time–frequency asymmetry. Since in
the presented algorithm the search takes place symmetrically in time and frequency, the
results of that symmetry carry over to the optimal representation. As an illustration, a
proper optimal representation of white noise should be statistically symmetric in the time–
frequency domain (since both the time representation and the frequency representation are
white noise). However, as is obvious from figure 12, the ‘classical’ tree algorithm gives a
misleading result, i.e. the decomposition is strongly asymmetric, whereas the optimal basis
reveals the actual time–frequency symmetry of this signal.

4. Conclusions

We have presented a method that enables one to find the absolute best basis from within a
wavepacket decomposition of a signal, i.e. the basis that optimizes the value of the chosen
objective function over all possible bases that can be constructed from that wavepacket
decomposition. It provides a tool for revealing subtle features of a signal, which could be
impossible to detect with the existing techniques. Although the chosen objective function
in our article is entropy, we show in the appendix that all concave objective functions will
yield the same results, i.e. will choose the same best basis that achieves maximal contrast
(maximal energy in any number of highest basis elements), if such a maximal contrast is at
all possible.

Acknowledgments

The authors would like to thank the Minnesota SuperComputer Institute for its continuous
and generous support in computing and graphic resources. This research was partially
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Figure 11. ‘Classical’ (left) versus optimal (right) WP representation of the first 4096 data points
(20 480 s) of the Iowa City rainfall event of 3 October 1990 (top) and of the data points 101
to 4196 from the same event (bottom). The optimal tiling is very close to being shift-invariant,
while the ‘classical’ tiling is clearly not shift-invariant.
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Figure 12. ‘Classical’ WP representation (left) versus optimal representation (right) of a
Gaussian white noise signal (1024 values). The images depict the fact that while the single-tree
WP algorithm masks the actual time–frequency symmetry, the absolute optimal representation
reveals it.
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Appendix. Generalization of basis optimality results for any concave objective
function

The relationship between a concave objective function (e.g. entropy) applied to a basis
and the compression performance of that basis is analysed herein. Suppose we have a
series ofn samples and a normalized basisx thereof, which we order non-increasingly by
absolute value, i.e.|x(1)| > |x(2)| > · · · > |x(n)|. Let us denoteσk =

∑k
1(x

(i))2 (usually
called ‘the sum of the squares of thek most significant basis elements’), andσ0 = 0 by
convention. Note that the non-negativity of(x(i))2 makesσk non-decreasing withk, while
the non-increasing ordering of|x(i)| implies that theσ -curves are non-convex, in the sense
that σk − σk−1 > σk+1 − σk, ∀k ∈ {1, . . . , n − 1}. Also, σn = 1 from the normalization
condition.

First, let us consider two basesx 6= y, of which y is better thanx in compression

performance, i.e. σk(y) > σk(x), ∀k ∈ {1, . . . , n}. We shall prove thatS(y)
Def= −

2
∑n

1(y
(i))2 ln |y(i)| < S(x). To this end, we will devise a finite number of steps that take|x|

into |y|, by decreasing its entropyS at each step. Letδ ::= mink∈{l,...,m−1}[σk(y)− σk(x)],
such thatδ > 0, σl−1(x) = σl−1(y) and σm(x) = σm(y), n > m > l > 0. There has to
exist such a subsequencel, . . . , m − 1, sinceσ0(x) = σ0(y) = 0, σn(x) = σn(y) = 1,
and initially x 6= y. As a first step, let us changex such that(x(l))2 ::= (x(l))2 + δ and
(x(m))2 ::= (x(m))2 − δ, which translates intoσk ::= σk + δ, ∀k ∈ {l, . . . , m − 1}. Indeed,
we find a decrease in entropy:−[(x(l))2+ δ] ln[(x(l))2+ δ]− [(x(m))2− δ] ln[(x(m))2− δ] <
−2(x(l))2 ln |x(l)| − 2(x(m))2 ln |x(m)|, sinceδ > 0, |x(l)| > |x(m)|, and the function−u ln u
is concave from−(u ln u)′′ = −1/u < 0, ∀u > 0. At this point, for at least one index
k0 ∈ {l, . . . , m − 1} we haveσk0(y) = σk0(x). We can now repeat the above step on
subsequences ending, and respectively beginning, atk0. Non-convexity and monotonicity
of σ will be respected within the subsequences, since only a vertical translation takes place,
and will also be respected aroundk0, sinceσk0−1(x) 6 σk0−1(y) 6 σk0(y) = σk0(x) 6
σk0+1(x) 6 σk0+1(y). Therefore the existence and non-increasing ordering ofx is preserved
at each step, making the decrease in entropy happen at the respective next step, until
maxk∈{1,...,n}[σk(y)− σk(x)] = 0⇐⇒ σ(y) = σ(x). Note thatσ(y) = σ(x)⇐⇒ y = x
and the algorithm stops (after having gone through a number of steps less than or equal to
n).

The above shows that compression performance and entropy introduce the same ordering
in a given set of normalized bases, if the compression-performance ordering exists as defined
above (i.e. theσ -curves do not cross). As a consequence, the best compression will be
achieved by the least-entropy basis. It is important to note two facts:

(1) In the proof we have only used the concavity of−u ln u, thereforeany concave
function of (x(i))2 on [0, 1] introduces thesameordering, if the compression-performance
(‘contrast’) ordering exists.

(2) Two orderings can be compared only if they apply to the same set (of bases, in our
case). While this may at first sound trivial, let us for instance recall that the single-tree and
the double-tree wavepacket algorithms donot operate on the same set of bases, since the
double tree can access quite a few more bases than the single tree.

It must be noted that the best compression of a signal may not exist at all as
defined, in the sense that either of two or more bases will perform best in terms of
recovered energy, depending on thenumber of highest basis elements chosen. To
illustrate this situation consider the case of the sequence(2, 3, 1, 9), which normalized
givesx = ( 2√

95
, 3√

95
, 1√

95
, 9√

95
), and its first Haar wavepacket decomposition level isy =
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( 5√
190
,− 1√

190
, 10√

190
,− 8√

190
). We haveσ(x) = ( 81

95,
90
95,

94
95, 1) andσ(y) = ( 50

95,
82
95,

94.5
95 , 1).

Needless to say, reconstruction with one or two basis elements is better when basisx is
used (which, by the way, is the single-tree wavepacket, entropy-objective best basis in this
case), whereas with three basis elements it is better when basisy is used. Since for such
cases it is not clear which the best compression is in the first place, we cannot look for any
relation between entropy (or any other objective function) and compression.
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[8] Herley C, Kovǎcevíc J, Ramchandran K and Vetterli M 1992Arbitrary Orthogonal Tilings of the Time–
Frequency Plane (Int. Symp. on Time–Frequency and Time-Scale Analysis 11–14, Victoria, BC)(New York:
IEEE)

[9] Ramchandran K and Vetterli M 1993 Best wavelet packet bases in a rate-distortion senseIEEE Trans. Image
Process.41 160–73


